

# Nutrient Management and Nutrient Recovery Thematic Network

From innovation to practice: the Farmer Platform as an inventory for recovered organic and low input fertiliser solutions

Struvite from livestock waste: ID 250 & ID 256

Francisco Corona – Cartif 16 September 2021

#### STRUVITE RECOVERED FROM LIVESTOCK WASTE



- Francisco Corona, Ph.D.
- Researcher of Circular Economy Area from Fundación Cartif.



Research & Technology Organisation



### STRUVITE HISTORY

- Struvite was first identified as a crystalline material by Rawn in 1937.
- Since the 1970s, struvite has been a frequent problem in WWTPs.
- Struvite deposits spontaneously in the pipes and produce clogging.
- On the other hand, struvite formation is also considered a very promising strategy for P recovery because of its potential as a slowrelease fertiliser.



### **STRUVITE**

 Ammonium (N) and phosphate (P) can be removed from the wastewater or livestock waste by precipitating a salt of phosphate and ammonium called struvite.

The reaction that takes place is:

$$Mg^{2+} + NH_4^+ + PO_4^{3-} + 6H_2O \rightarrow MgNH_4PO_4 \cdot 6H_2O$$





### STRUVITE PROPERTIES

| Parameter           | Características                                                                                                                                                                                         | Reference                    |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| Nature              | Mineral salt                                                                                                                                                                                            |                              |  |
| Chemical name       | Magnesium ammonium phosphate hexahydrate                                                                                                                                                                |                              |  |
| Formula             | MgNH₄PO₄·6H₂O                                                                                                                                                                                           |                              |  |
| Aspect              | White glowing crystal                                                                                                                                                                                   | Bassett & Bedwell, 1933      |  |
| Structure           | Orthorhombic: regular PO <sub>4</sub> <sup>3-</sup> octahedra, distorted Mg(H <sub>2</sub> O) <sub>6</sub> <sup>2+</sup> octahedral, and NH <sub>4</sub> + groups all held together by hydrogen bonding | Abbona & Boistelle, 1979     |  |
| Molecular weight    | 245,43 g/mol                                                                                                                                                                                            |                              |  |
| Density             | 1,711 g/cm <sup>3</sup>                                                                                                                                                                                 | Borgerding, 1972             |  |
| Solubility          | Low in water: 0,018 g/100 mL at 25 °C in water High in acids: 0,033 g/100 mL at 25 °C in 0,001 N HCI 0,178 g/100 mL at 25 °C en 0,01 N HCI                                                              | Bridger <i>et al.</i> , 1961 |  |
| Solubility constant | 10E-13,26                                                                                                                                                                                               | Ohlinger et al., 1998        |  |
|                     |                                                                                                                                                                                                         |                              |  |



The low water solubility and the high solubility in acidic media gives it ideal properties as a slow-release fertiliser



### STRUVITE INDUSTRIAL SCALE

- Nowadays there are large scale struvite crystallisation facilities with the potential to obtain a commercial product.
- This struvite could be used as a biofertiliser and replace phosphate fertilisers, in which the P comes from the extraction from the phosphate rock.

| Technology<br>Parameter       | Phospaq™                | Anphos   | NuReSys©          | Unitika<br>Phosnix© | Ostara<br>Pearl®     | Crystalactor©                                         |
|-------------------------------|-------------------------|----------|-------------------|---------------------|----------------------|-------------------------------------------------------|
| Kind of reactor               | CSTR with air diffusion | BSTR     | CSTR              | FBR                 | FBR                  | FBR                                                   |
| Product name                  | Struvite                | Struvite | BioStru®          | Struvite            | Crystal<br>Green®    | Struvite, CaP,<br>MgP                                 |
| Recovery yield<br>(%)         | 10-40 %N<br>80 %P       | 80-90 %P | 5-20 %N<br>>85 %P | 80-85 %P            | 10-40 %N<br>80-90 %P | 10-40 %N<br>70-80 % P (e<br>struvite)<br>>90 %P (CaP) |
| Large scale<br>facilities (№) | 11                      | 3        | 7                 | 2                   | 8                    | 4                                                     |



### STRUVITE PRODUCTION

- Nowadays there are large scale struvite crystallisation facilities with the potential to obtain a commercial product. Struvite can mainly be obtained by recovering N and P from two types of effluent:
  - 1) Wastewater from treatment plants.
  - 2) Livestock waste.











# VALORIZATION OF AGRO AND LIVESTOCK WASTE BY ANAEROBIC DIGESTION



Adapted from: www.cleancoastresources.com

### STRUVITE PRODUCTION FROM CARTIF

- Cartif produces the struvite from the digestate coming from the anaerobic digestion of the pig slurry.
- Digestate is the liquid by-product obtained from the anaerobic digestion process.



### **CRYSTALLISATION REACTOR (ID 256)**

- The pilot plant for struvite production is composed by a 50 L reactor made of borosilicate glass with a cylindrical shape.
- Magnesium chloride (MgCl<sub>2</sub>·6H<sub>2</sub>O) was used as Mg source.
- The pH of the samples was 8.5, so it was necessary to add a concentrated alkali (50% NaOH solution) to raise the pH value to 9.0.





# **CRYSTALLISATION REACTOR (ID 256)**





### **CRYSTALLISATION REACTOR (ID 256)**





### **CRYSTALLISATION REACTION**

 Scanning Electron Microscope (SEM) image of the struvite crystals obtained in this study.



 As can be seen, the crystals obtained have the characteristic shape of struvite crystals (needle-shaped crystals).

## **STRUVITE COMPOSITION (ID 250)**



|   | Parameter | Struvite<br>from<br>CARTIF |
|---|-----------|----------------------------|
|   | C (%w)    | 3,0                        |
|   | H (%w)    | 6,9                        |
|   | N (%w)    | 4,74                       |
|   | AI (%w)   | n.d.                       |
|   | Ca (%w)   | 0,165                      |
| F | Fe (%w)   | 0,001                      |
|   | Mg (%w)   | 8,918                      |
|   | P (%w)    | 11,211                     |
|   | K (%w)    | 0,561                      |
|   | Si (%w)   | n.d.                       |
|   | Na (%w)   | 0,817                      |
|   | Ti (%w)   | n.d.                       |

| Parámetros | Struvite<br>from<br>CARTIF |  |  |
|------------|----------------------------|--|--|
| Ba (mg/kg) | n.d.                       |  |  |
| Cd (mg/kg) | n.d.                       |  |  |
| Co (mg/kg) | n.d.                       |  |  |
| Cr (mg/kg) | n.d.                       |  |  |
| Cu (mg/kg) | n.d.                       |  |  |
| Mn (mg/kg) | n.d.                       |  |  |
| Mo (mg/kg) | n.d.                       |  |  |
| Ni (mg/kg) | n.d.                       |  |  |
| Pb (mg/kg) | n.d.                       |  |  |
| Sb (mg/kg) | n.d.                       |  |  |
| Sr (mg/kg) | n.d.                       |  |  |
| V (mg/kg)  | n.d.                       |  |  |
| Zn (mg/kg) | 0,001                      |  |  |

n.d.: not detected



### CONCLUSIONS

- Nutrient composition and characteristics of struvite from are very similar than commercial struvite.
- Struvite has no significant content of PTEs or other contaminants that would prevent its use as a biofertiliser.
- Organic matter (carbon content) of struvite can give it undesirable organoleptic properties (bad odour or dark colour), causing it to be rejected by the final user.
- Organic matter could be removed from the struvite by a scrubber.

Struvite obtained by Cartif meets all the requirements to be used as a slow release biofertiliser



### **CONTACT**

### DOLORES HIDALGO BARRIO (project manager)

dolhid@cartif.es

#### FRANCISCO CORONA ENCINAS

fraenc@cartif.es

www.cartif.es

Parque Tecnológico de Boecillo
Parcela 205. 47151. Boecillo, Valladolid
SPAIN
+34 983 546504
+34 983 548911





### Nutrient Management and Nutrient Recovery Thematic Network

www.nutriman.net







@NUTRIMANnetwork



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818470.