AshDec®
Thermochemical P-Recovery from Sewage Sludge Ash

Julian Ulbrich, M.Eng.
Dr. Tanja Schaaf
Dr. Andreas Orth
Metso Outotec in brief

Metso Outotec is a frontrunner in sustainable technologies, end-to-end solutions and services for the aggregates, minerals processing, metals refining and recycling industries globally.

By improving our customers’ energy and water efficiency, increasing their productivity and reducing environmental risks with our process and product expertise, we are the partner for positive change.

4.2 billion euro sales*

15,000+ employees, 80+ nationalities

50+ countries with presence

150 years of expertise in mining and metal

*Illustrative combined in 2019.
P-Recovery with the AshDec® - Process

Why do sewage sludge ashes need to be treated with a P-Recovery technology?
- Low plant availability of Phosphorus compounds and eventually
- Heavy metal content

Vorstellung des AshDec®-Verfahrens

- Alkaline Compound
- Reducing Agent
- HM: Arsenic, Cadmium, Lead
- Fe, Al, Ca, Si

ASH \[\rightarrow\] PROCESS \[\rightarrow\] FERTILIZER

HM = Heavy Metal

850 °C – 900 °C
Rotary Kiln

- Poor plant availability of Phosphorus
- Ash contains heavy metals (HM)

- Highly plant available phosphorus
- Reduced heavy metal content
Test work: Laboratory and semi-industrial scale

Target
- Increasing the solubility of phosphorus in neutral ammonium citrate (P_{NAC})
- P_{NAC} is a common indication factor for the plant availability of a phosphorus compound
- Removal of heavy metals
- Production of 1.5 t P-fertilizer (~20 kg/h)

Variation of process parameters
- Additives (Na_2SO_4; NaHCO_3; Na_2CO_3)
- Na:P - ratio (2 steps)
- Temperature (850 °C - 1,000 °C)
- Retention time

Metso:Outotec

Vorstellung des AshDec® - Verfahrens
Results: Semi-industrial scale 2020
Production

P_{NAC,rel} = ca. 85 - 95 %
Preliminary results: reduction of heavy metals

- NaHCO₃ used as additive

<table>
<thead>
<tr>
<th></th>
<th>Cu</th>
<th>Zn</th>
<th>Ni</th>
<th>Pb</th>
<th>As</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration [mg/kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>980 °C red.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 °C red.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>860 °C red.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>860 °C oxi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Metso:Outotec
07 December 2020
AshDec®
The product of the AshDec® process

- Phosphorus fertilizer (~ 15-25 % P$_2$O$_5$)
- Not soluble in water → reduced risk of runoff, leaching and fixation
- Solubility of phosphorus in neutral ammonium citrate (P$_{\text{NAC}}$) > 80 %
- P-supply on demand: Release of P only in presence of crop root exudates
The product of the AshDec® process

Spinach, Pot tests, University of Bonn. 2019

1. Harvest

<table>
<thead>
<tr>
<th>AshDec® - product</th>
<th>Sewage Sludge</th>
<th>Triple-Superphosphate</th>
<th>Control</th>
</tr>
</thead>
</table>

2. Harvest

<table>
<thead>
<tr>
<th>AshDec® - product</th>
<th>Sewage Sludge</th>
<th>Triple-Superphosphate</th>
<th>Control</th>
</tr>
</thead>
</table>
The product of the AshDec® process

Spinach, Pot tests, University of Bonn. 2019

Spinach artificial soil dry matter

Dry matter yield spinach

HGoTECH Substrat

Spinach sandy soil dry matter

Sandboden

Dry matter (g)

Dry matter (g)
Summary

➢ Thermochemical P-recovery by improving the plant availability and reducing the heavy metal content with AshDec®

➢ Product is not water-soluble, but highly citrate-soluble → smaller environmental footprint

➢ Advantages: P-Recovery rate > 95 %, no hazardous input/output materials, lower chemical consumption, no or very little amounts of residues, no by-products, comparable or lower CapEx and OpEx compared to other ash processes

➢ Next steps for AshDec®: Participation in the German project “RePhoR”. Objective: To build a full-scale demonstration plant for phosphorus recovery in Germany (2020-2025)
Partner for positive change