07 December 2020

AshDec®
Thermochemical
P-Recovery from
Sewage Sludge Ash

Julian Ulbrich, M.Eng.

Dr. Tanja Schaaf

Dr. Andreas Orth

Metso:Outotec

Metso Outotec in brief

Metso Outotec is a frontrunner in sustainable technologies, end-toend solutions and services for the aggregates, minerals processing, metals refining and recycling industries globally.

By improving our customers' energy and water efficiency, increasing their productivity and reducing environmental risks with our process and product expertise, we are the partner for positive change.

4.2 billion euro sales*

50+
countries with
presence

15,000+ employees, 80+ nationalities

150 years of expertise in mining and metal

Metso:Outotec

* Illustrative combined in 2019.

07 December 2020

P-Recovery with the AshDec® - Process

Why do sewage sludge ashes need to be treated with a P-Recovery technology?

- Low plant availability of Phosphorus compounds and eventually
- Heavy metal content

850 °C – 900 °C Rotary Kiln

- Poor plant availability of Phosphorus
- > Ash contains heavy metals (HM)

Metso:OL..... Vorstellung des AshDec® - Verfahrens

- > Highly plant available phosphorus
- > Reduced heavy metal content

07 December 2020

Test work: Laboratory and semi-industrial scale

Target

- Increasing the solubility of phosphorus in neutral ammonium citrate (P_{NAC})
- P_{NAC} is a common indication factor for the plant availability of a phosphorus compound
 - Removal of heavy metals
 - Production of 1,5 t P-fertilizer (~20 kg/h)

Variation of process parameters

- Additives (Na₂SO₄; NaHCO₃; Na₂CO₃)
- Na:P ratio (2 steps)
- Temperature (850 °C 1.000 °C)
- Retention time

Metso:Outotec

Vorstellung des AshDec® - Verfahrens

07 December 2020

IBU-tec

Results: Semi-industrial scale 2020

Production

Preliminary results: reduction of heavy metals

➤ NaHCO₃ used as additive

Metso:Outotec

07 December 2020

The product of the AshDec® process

- ➤ Phosphorus fertilizer (~ 15-25 % P₂O₅)
- ➤ Not soluble in water → reduced risk of runoff, leaching and fixation
- ➤ Solubility of phosphorus in neutral ammonium citrate (P_{NAC}) > 80 %
- P-supply on demand: Release of P only in presence of crop root exudates

Metso:Outotec

07 December 2020

The product of the AshDec® process

Spinach, Pot tests, University of Bonn. 2019

Metso:Outotec AshDec®

07 December 2020

The product of the AshDec® process

Spinach, Pot tests, University of Bonn. 2019

Summary Thermochemical P-recovery by improving the plant availability and reducing the heavy metal content with AshDec® Product is not water-soluble, but highly citrate-soluble \rightarrow smaller environmental footprint Advantages: P-Recovery rate > 95 %, no hazardous input/output materials, lower chemical consumption, no or very little amounts of residues, no by-products, comparable or lower CapEx and OpEx compared to other ash processes Next steps for AshDec®: Participation in the German project "RePhoR". Objective: To build a full-scale demonstration plant for phosphorus recovery in Germany (2020-2025)

Partner for positive change

Metso:Outotec